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Abstract

Temperate East Asia (TEA) is characterized by diverse land cover types, including forest and agricultural lands, one of the world’s largest

temperate grasslands, and extensive desert and barren landscapes. In this paper, we explored the potential of SPOT-4 VEGETATION (VGT)

data for the classification of land cover types in TEA. An unsupervised classification was performed using multi-temporal (March–

November 2000) VGT-derived spectral indices (Land Surface Water Index [LSWI] and Enhanced Vegetation Index [EVI]) to generate a land

cover map of TEA (called VGT-TEA). Land cover classes from VGT-TEAwere aggregated to broad, general class types, and then compared

and validated with classifications derived from fine-resolution (Landsat) data. VGT-TEA produced reasonable results when compared to the

Landsat products. Analysis of the seasonal dynamics of LSWI and EVI allows for the identification of distinct growth patterns between

different vegetation types. We suggest that LSWI seasonal curves can be used to define the growing season for temperate deciduous

vegetation, including grassland types. Seasonal curves of EVI tend to have a slightly greater dynamic range than LSWI during the peak

growing season and can be useful in discriminating between vegetation types. By using these two complementary spectral indices, VGT data

can be used to produce timely and detailed land cover and phenology maps with limited ancillary data needed.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction has been launched. These include the VEGETATION
Information on land cover status at the regional scale is

needed for natural resource management, carbon cycle

studies, and modeling of biogeochemistry, hydrology, and

climate. Satellite-based remote sensing products can meet

these data needs in a timely and consistent manner. Numer-

ous studies of large-scale mapping of land cover have used

data from the Advanced Very High Resolution Radiometer

(AVHRR; Defries & Townshend, 1994; Loveland et al.,

2000). However, the AVHRR sensors, originally designed

for meteorological applications, have only two spectral

bands (red and near-infrared) that can be used to generate

spectral indices of vegetation vigor. Recently, a new gener-

ation of optical sensors designed for terrestrial applications
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(VGT) sensor onboard the SPOT-4 satellite and the Moder-

ate Resolution Imaging Spectroradiometer (MODIS) on-

board the Terra and Aqua satellites. VGT and MODIS

have a number of advantages over AVHRR, including more

spectral bands that can be used for vegetation analyses (see

Section 2.1 for more details about the VGT sensor). Multi-

temporal VGT data have been used to characterize forests in

northeastern China (Xiao et al., 2002b) and cropland in

southern China (Xiao et al., 2002a). The Global Land Cover

program (GLC2000) is an on-going effort to provide a

harmonized global land cover product from VGT data using

a hierarchical classification scheme. Preliminary results

from northern Eurasia are promising (Bartalev et al.,

2003); however, only the Russian forest cover has been

tested for accuracy, with an R2 of 0.93 existing between

GLC2000 forest areas and official Russian forest statistics

(Bartalev et al., 2003).
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A number of vegetation indices have been developed and

used for monitoring vegetation structure and function, as well

as land cover classification at large spatial scales. The

Normalized Difference Vegetation Index (NDVI, Eq. (1)),

which uses spectral information from the red and near

infrared bands, is the most widely used. NDVI has served

as the input data for various satellite-based land cover

mapping activities (Defries & Townshend, 1994; Loveland

et al., 2000). The shortwave infrared (SWIR) band is sensitive

to vegetation cover, leaf moisture and soil moisture (Tucker,

1980), and a combination of the NIR and SWIR bands has the

potential for retrieving canopy water content (Ceccato et al.,

2002a,b). The Land Surface Water Index (LSWI, Eq. (2)) is

calculated using NIR and SWIR reflectance values (Jürgens,

1997; Xiao et al., 2002b). Recently, LSWI has been used

together with NDVI as input to land cover mapping efforts

(Xiao et al., 2002b), with the expectation that the increased

amount of spectral information provided from LSWI would

improve the discrimination of vegetation types. It is known

that NDVI has several limitations, including sensitivity to

both atmospheric conditions (Xiao et al., 2003) and the soil

background, and a tendency to saturate at closed vegetation

canopies with large leaf area index values. To account for

these limitations, the Enhanced Vegetation Index (EVI, Eq.

(3)) was proposed, which directly adjusts the reflectance in

the red spectral band as a function of the reflectance in the

blue band (Huete et al., 1997; Liu & Huete, 1995):

NDVI ¼ ðqnir � qredÞ=ðqnir þ qredÞ ð1Þ

LSWI ¼ ðqnir � qswirÞ=ðqnir þ qswirÞ ð2Þ

EVI ¼ 2:5� qnir � qred

qnir þ 6� qred � 7:5� qblue þ 1
ð3Þ

where qblue, qred, qnir, and qswir represent the surface reflec-

tance values of blue, red, NIR, and SWIR bands, respectively.
Fig. 1. An elevation map of TEA with national boundaries shown. The elevation

www.ngdc.noaa.gov).
In the evolution of land cover product generation, spectral

input data have become increasingly tailored for land cover

analyses. There is a need to assess the potential of using both

EVI and LSWI for generating improved land cover classi-

fications that take advantage of a much greater portion of the

electromagnetic spectrum than previous NDVI-based

products.

In this study, we explore the utility of multi-temporal

VGT data for the mapping of land cover in Temperate East

Asia (TEA). Our objectives were threefold: (1) to document

the land cover of TEA using VGT data acquired in 2000; (2)

to perform a validation of the land cover map using products

derived from fine-resolution imagery; and (3) to analyze the

seasonal dynamics of the various land cover types. This

study outlines the potential for using VGT data to monitor

the seasonal and inter-annual ecosystem dynamics in TEA.

Such a regional level product can greatly improve the

estimation of carbon and greenhouse gas fluxes in very

dynamic and changing landscapes.

1.1. Study area

TEA is characterized by diverse land cover types,

ranging from productive agricultural lands (e.g., North

China Plain) to some of the most barren landscapes on

Earth (e.g., Taklimakan and Gobi Deserts). The northern

portion of TEA is covered by boreal forest and taiga,

primarily dominated by larch and pine species. One of the

most extensive temperate steppe grasslands in the world

exists in the middle of the region. Land cover variability in

TEA is strongly influenced by two factors: the monsoon

climate system and elevation. The monsoon circulation

creates a strong seasonality in precipitation availability,

where the majority of annual precipitation falls in the

critical growing season months. The amount and spatial

distribution of the annual monsoon precipitation is con-
product is the Global Land One-Kilometer Base Elevation dataset (http://
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trolled by several moisture sources and prevailing winds

(Xue, 1996). Elevation exerts a large influence on the land

cover distribution of TEA because several sizable moun-

tain ranges are located within the region, and much of the

region is situated on plateaus with an average elevation

well over 1000 m (Fig. 1).

While much of TEA remains remote and inaccessible,

the area has experienced increased human and natural

activities that have significantly altered the structure and

function of the constituent ecosystems. Forests have become

increasingly fragmented due to harvesting and agricultural

encroachment (Wang et al., 2001), while natural wildfires

cause landscape-level changes on an annual basis

(Kasischke & Bruhwiler, 2002). Grasslands in TEA have

been subjected to a range of anthropogenic activities,

including cropland conversion and livestock grazing, which

leads to overgrazing and desertification. Such changes can

significantly alter the carbon dynamics of terrestrial ecosys-

tems. It has been suggested that a large carbon sink is

located in northern Asia (Bousquet et al., 1999). While the

role of forests in this Northern Hemisphere carbon sink has

been documented (Schimel et al., 2001), grasslands play a

significant but poorly recognized role in the global carbon

cycle (Scurlock & Hall, 1998). Grassland soil carbon stocks

(where the vast majority of grassland carbon is stored) have

been estimated at 10–30% of global soil carbon (Anderson,

1991; Eswaran et al., 1993).
2. Data and methods

2.1. VEGETATION image data and pre-processing

The VGT instrument has four spectral bands: blue (B0;

k = 430–470 nm), red (B2; k = 610–680 nm), near infrared

(B3; k = 780–890 nm), and short-wave infrared (SWIR;

k = 1580–1750 nm), where k represents the wavelength in

each band. These are equivalent to Landsat Thematic

Mapper (TM) bands 1, 3, 4, and 5, respectively. The blue

band is primarily used for atmospheric correction. The

SWIR band is sensitive to soil and vegetation moisture

content, and can improve the discrimination of vegetation

and other land cover types. With a swath width of 2250 km,

VGT provides daily coverage of the globe at 1-km spatial

resolution. Unlike scanner sensors (e.g., AVHRR), the VGT

instrument uses linear-array technology and thus produces

high-quality imagery at coarse resolution with greatly re-

duced distortion. VGT-S10 (10-day synthesis product) data

were used in this analysis. This data is atmospherically

corrected for ozone, aerosols and water vapor (Rahman &

Dedieu, 1994). There are three 10-day composites for each

month: days 1–10, 11–20, and 21 to the last day of a

month. VGT-S10 data are generated by selecting the pixels

that have the maximum NDVI values within a 10-day

period. This approach helps to minimize the effect of cloud

cover and variability in atmospheric optical depth. We
downloaded year 2000 VGT-S10 data (http://free.vgt.vi-

to.be) and generated a subset of composites for the TEA

study area (37–54jN, 87–127jE). Both EVI and LSWI

were calculated for each of the VGT-S10 products.

Although the maximum NDVI compositing procedure

eliminates most cloudy pixels, some VGT-S10 products

contain residual cloud contamination. We designed a simple

approach (Xiao et al., 2003) to fill vegetation index values

where the VGT Quality Assurance flags indicated cloudy

pixels existed in the time series. Let X(i,j,k) be the vegeta-

tion index value for pixel (i,j) and composite k (varying

from 1 to 36 periods in a year). For a cloudy pixel in a 10-

day composite k, X(i,j,k), we first selected a three-point

time-series filter, X(i,j,k� 1), X(i,j,k), X(i,j,k + 1) and used

values of non-cloudy pixels in this window to correct

cloudy pixels. If both X(i,j,k� 1) and X(i,j,k + 1) pixels were

cloud-free, we calculated the average of X(i,j,k� 1) and

X(i,j,k + 1) and used the average value to replace X(i,j,k). If

only one pixel (either X(i,j,k� 1) or X(i,j,k + 1)) was cloud-

free, we used that pixel to replace X(i,j,k). If the algorithm

did not succeed in a three-point filter, we then extended to a

five-point time-series filter, X(i,j,k� 2), X(i,j,k� 1), X(i,j,k),

X(i,j,k + 1), X(i,j,k + 2), using the same procedure as the

three-point filter.

2.2. Classification and interpretation

There are two general approaches for land cover classifi-

cation: per-pixel binary (0 or 1) and sub-pixel unmixing

(percentage fractional cover within a pixel). The per-pixel

binary approach is the most widely used method, including

the International Geosphere-Biosphere Programme (IGBP)

DISCover dataset (Loveland et al., 2000) and the GLC2000

dataset (http://www.gvm.jrc.it/glc2000/defaultGLC2000.

htm). In this study, we explored the potential and limitations

of the per-pixel binary approach using coarse-resolution VGT

data and fine-resolution land cover products derived from

Landsat images. An unsupervised classification procedure

(ISODATA) was used for image classification (ENVI version

3.6), as it allows for the identification of all the important

spectral groupings without initially knowing which are the-

matically significant (Cihlar et al., 1998). EVI and LSWI

bands from March 1–10, 2000 to November 21–30, 2000 (a

total of 54 bands) were used as input to the iterative

ISODATA clustering algorithm. One hundred spectral clus-

ters were generated with the following parameters: conver-

gence threshold (95%), maximum number of merge pairs (2),

minimum class standard deviation (1), minimum number of

pixels in a class (100), and maximum number of iterations

(10). Clusters containing mixed classes were separately

reclassified in order to further extract individual classes.

Interpretation of spectral clusters into land cover types is

to some degree dependent upon the land cover classification

scheme. We felt that it was necessary to develop a more

detailed land cover classification scheme, as opposed to

using an existing generalized global legend (e.g., IGBP

 http:\\www.ngdc.noaa.gov 
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DISCover). Temperate East Asia contains one of the world’s

largest temperate grasslands; these grasslands vary in com-

position from lush meadow vegetation to sparse desert

steppe. It was our goal to discriminate the major grassland

types that exist in the area (meadow, meadow steppe, typical

steppe, desert steppe), and this could not be accomplished

using the IGBP DISCover classes. Our land cover classifi-

cation scheme, VGT-TEA, contains five classes of woody

vegetation, six classes of grassland, two classes that contain

cropland, and five classes of barren or sparsely vegetated
Table 1

Descriptions and dominant vegetation components (Gao & Yu, 1998) of land cov

VGT-TEA class Class description

Cropland Land dedicated to the production

Cropland/natural

vegetation

A mosaic of cropland and natural

no one component comprises mor

60% of the landscape

Evergreen needleleaf forest Dominated by evergreen needlelea

with a percent canopy cover great

60% and height exceeding 2 m

Deciduous broadleaf forest Dominated by deciduous broadlea

a percent canopy cover greater tha

height exceeding 2 m

Mixed forest Dominated by mixed tree types w

canopy cover greater than 60% an

exceeding 2 m

Deciduous needleleaf

woodland

Dominated by deciduous needlele

with a percent canopy cover less

Mixed woodland Dominated by mixed woody vege

a percent canopy cover less than 6

Shrubland/grassland A mosaic of herbaceous and wood

less than 2 m in height

Meadow/meadow steppe Land covered with meadow or me

herbaceous plants and less than 10

vegetation cover

Meadow steppe/typical steppe Land covered with meadow stepp

herbaceous plants and less than 10

vegetation cover

Typical steppe Land covered with typical steppe

and less than 10% woody vegetat

Desert steppe/typical steppe Land covered with typical steppe

herbaceous plants and less than 1

vegetation cover

Desert steppe Land covered with desert steppe h

and less than 10% woody vegetat

Desert steppe/desert A mosaic of desert steppe herbace

exposed soil, sand, rocks or snow

woody vegetation

Desert Areas of exposed soil, sand, rocks

never have more than 10% vegeta

any time of the year.

Sparse vegetation Vegetation cover (woody or herba

Tundra Treeless ecosystems due to latitud

Vegetation consists primarily of g

small herbs, shrubs, lichen, and m

Urban Covered by buildings and other h

structures

Water/ice Permanent water, ice, and snow
land. Descriptions of these classes and their main vegetation

components are provided in Table 1.

To aid in the interpretation and labeling of the spectral

clusters, a number of ancillary data sets were used. Both the

IGBP DISCover dataset (Loveland et al., 2000) and the

Temperate East Asia Landcover (TEAL) dataset (Ojima et

al., unpublished) were derived from 1-km 1992/1993

AVHRR data. The 1:4,000,000 Map of Rangeland Resour-

ces in China (CAS/SPC, 1996) provided information on the

spatial extent of the major grassland categories in China.
er classes within the VGT-TEA product

Dominant components

of crops N.A.

vegetation;

e than

N.A.

f trees

er than

Pinus, Picea, and Abies

f trees with

n 60% and

Quercus, Betula, Acer, and Populus

ith a percent

d height

Pinus, Quercus, Betula, and Larix

af vegetation

than 60%

Larix sibirica, L. gmelini

tation with

0%

Pinus, Populus, Salix

y vegetation Quercus, Betula, Salix (shrubs),

Stipa cleistogenes, Cleistogenes

gramineae (herbaceous)

adow steppe

% woody

Stipa baicalensis, Filifolium sibiricum

e or typical steppe

% woody

Combination of meadow steppe and

typical steppe components

herbaceous plants

ion cover

Aneurolepidium chinense, Stipa

grandis, S. krylovii

or desert steppe

0% woody

Combination of typical steppe and

desert steppe components

erbaceous plants

ion cover

Stipa krylovii, S. breviflora, S. gobica,

S. pennata, Cleistogenes soongorica,

Allium polyrrhizum

ous plants and

; less than 10%

Stipa krylovii, S. breviflora, S. gobica,

S. pennata, Cleistogenes soongorica,

Allium polyrrhizum

, or snow that

ted cover during

N.A.

ceous) of 10–30% Haloxylon ammodendron, Artemisia

salsoloides, Anabasis brevifolia

e or altitude.

rasses, sedges,

osses.

Mosaic-shrubs, herbs, sedges, grasses,

mosses, algae, lichens

uman-made N.A.

N.A.
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The China National Land Cover Dataset (NLCD; described

in detail in Section 2.3) was derived from Landsat Enhanced

Thematic Mapper (ETM+) images acquired in 1999 and

2000. Since vegetation distribution is related to elevation

gradients in the study area, the Global Land One-Kilometer

Base Elevation dataset was obtained from the NOAA

National Geophysical Data Center (http://www.ngdc.noaa.

gov/) and subset to the study area (Fig. 1) and used as an aid

for interpretation and labeling of the spectral clusters.

2.3. Accuracy assessment

Accuracy assessment of coarse-resolution land cover

products is a critical and challenging task, as these maps

can overestimate or underestimate cover types due to the

fragmentation and sub-pixel proportion of each cover type

(Achard et al., 2001). As an alternative approach to field

surveys, fine-resolution images and derived land cover maps

have been used for validation of coarse-resolution thematic

maps (Scepan, 1999; Scepan et al., 1999). In this study,

validation was performed in China and selected regions of

Mongolia, as we had detailed datasets derived from fine-

resolution Landsat data to support analysis in these areas

(Fig. 2).

Recently, the National Land Cover Project (supported by

the Chinese Academy of Sciences) completed the analysis

of Landsat 7 ETM+ images acquired in 1999 and 2000 for

China. Hundreds of ETM+ images were geo-referenced and

ortho-rectified, using field-collected ground control points

and fine-resolution digital elevation models. A classification

system of 25 land cover types was used in the project.

Visual interpretation of ETM+ images was conducted to

generate a thematic map of land use and land cover in China

at a scale of 1:100,000. The resultant vector National Land

Cover Dataset (NLCD-1999/2000) was converted into a
Fig. 2. Location of Thematic Mapper data (grey areas) that was used f
gridded database at 1-km resolution. The unique feature of

this 25-layer gridded 1-km database is that it still captures

all of the land cover information at the 1:100,000 scale by

calculating percent fractional cover within a 1-km pixel for

individual land cover types. The NLCD dataset was used in

previous characterizations of China land cover (Frolking et

al., 2002; Xiao et al., 2002b) and, in this analysis, it was

used to validate VGT-TEA within the Chinese portion of

TEA. One important issue that must be addressed when

using one satellite-derived dataset for validation of another

is consistent definition of land cover classes. At the detailed

land cover class level, such as the individual forest or

woodland types, there were inconsistent cover type defini-

tions between NLCD and VGT-TEA. For example, NLCD

defines forest as a canopy cover greater than 30%, while

VGT-TEA adopts the IGBP DISCover definition of forest

(greater than 60% canopy cover). This discrepancy in land

cover definitions has been addressed by the aggregation of

individual classes to very broad general land cover types

(Table 2).

For validation of the Mongolian portion of TEA, land

cover classifications from five Landsat TM images acquired

in the early 1990s (Fig. 2) were used. The 30-m classifica-

tion maps were aggregated to 1-km pixel size, such that

each pixel represented percent fractional cover for individ-

ual land cover types. Because of a lack of available fine-

resolution reference data in 1999/2000 for Mongolia, it was

necessary to use the TM classifications even though the

dates did not coincide with VGT-TEA. However, we are

confident that the different imaging times of the TM and

VGT products had minor impacts on the validation exercise

for two main reasons: (a) generalized land cover classes

were used (Table 2), likely accounting for potential spectral

differences due to inter-annual variation in vegetative cover;

and (b) the Mongolian portion of TEA has experienced less
or validation of the VGT-TEA product in China and Mongolia.

 http:\\www.ngdc.noaa.gov\ 


Table 2

Land cover classes in the VGT-TEA product (left column) with codes used

to identify the classes in Figs. 3–5

VGT-TEA land cover Aggregated land

cover

Area

(1000 km2)

Cropland cropland 562

Cropland/natural

vegetation

cropland/natural

vegetation

384

Evergreen needleleaf

forest (ENF)

woody vegetation 159

Deciduous broadleaf

forest (DBF)

woody vegetation 109

Mixed forest (MXF) woody vegetation 417

Deciduous needleleaf

woodland (DNW)

woody vegetation 176

Mixed woodland

(MXW)

woody vegetation 378

Shrubland/grassland shrubland/grassland 153

Meadow steppe/meadow

(M Stp/M)

grassland 141

Typical steppe/meadow

steppe (T Stp/M Stp)

grassland 322

Typical steppe (T Stp) grassland 785

Typical steppe/desert

steppe (T Stp/D Stp)

grassland 119

Desert steppe (D Stp) grassland 380

Desert steppe/desert

(D Stp/D)

sparsely vegetated 40

Desert sparsely vegetated 472

Sparse vegetation sparsely vegetated 915

Tundra sparsely vegetated 135

Urban sparsely vegetated 4

Water/ice water 72

‘Aggregated land cover’ indicates the general land cover category to which

each class was assigned in the validation exercises. The area column

represents total area for the VGT-TEA class within TEA.
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intensive changes in land cover than other areas. Table 2

outlines the class aggregations that were used so that the

three classifications (VGT-TEA, NLCD, Mongolian TM)

could be compared.
3. Results

3.1. VGT classification map of Temperate East Asia

(VGT-TEA)

VGT-TEA contains five classes of woody vegetation,

five classes of grassland, four classes of barren or sparsely

vegetated land, two classes of mixed land cover (crop-

land/natural vegetation mosaic, shrubland/grassland), and

single classes of cropland, tundra, and water (Fig. 3). A

distinct gradient of land cover types exists within TEA, as

is evident in Fig. 3. The great deserts of northwestern

China and southern Mongolia are a harsh and sparsely

vegetated landscape that accounts for approximately one-

quarter of the TEA land area. The temperate steppe

ecosystem, which surrounds the vast desert, accounts for

approximately one-third of the TEA land area. Within the

temperate steppe ecosystem a gradient of grassland types
exists, gradually changing from desert steppe to typical

steppe to meadow in the northern and eastern directions.

Woody vegetation (forests, woodlands, shrublands) ac-

counts for just over one-quarter of the TEA land area,

and is primarily situated in southern Russia and north-

eastern China. Cropland occupies a large swath of land in

the North China Plain and Liaohe River valley, and

represents the largest component of the remaining land

area in TEA.

3.2. Comparison of land cover type area estimates

Aggregation of classes to the most general land cover

types allows for a comparison of land cover totals derived

from different satellite sensors. While the VGT and IGBP

products were available for the entire study area, the

Landsat-derived NLCD product was only available for

China, and thus class area summaries were performed in

the China potion of TEA only (Table 3). Some obvious

differences exist between the class summaries derived from

coarse-resolution (VGT-TEA, IGBP) and fine-resolution

(NLCD) input data. The coarse-resolution products esti-

mate much smaller land cover components of both the

water and built-up classes. These two land covers often

exist at a scale that is much finer than the 1-km resolution

of the VGT and AVHRR sensors, and thus are suppressed

by spatial aggregation and not identified. Compared to the

NLCD product, VGT-TEA underestimates both woody

vegetation and grassland cover if only pure pixels (pixels

classified as one land cover type) are considered. However,

VGT-TEA contains two mixed classes (cropland/natural

vegetation, shrubland/grassland) that are partially com-

posed of woody vegetation and grassland. As part of the

validation procedure, the frequency distributions of both

VGT-TEA mixed classes were calculated in reference to

the fractional cover of each NLCD land cover type in

China. Using this method of class decomposition, the two

mixed classes (combined) were determined to have the

following compositions: grassland (44%), cropland (21%),

woody vegetation (20%), barren/sparsely vegetated (7%),

and other (8%). If these proportions are added to the pure

pixel total, many of the class areas of VGT-TEA are

similar to the NLCD product (Table 4).

In addition to the comparisons of remote sensing prod-

ucts using aggregated land cover classes, a more detailed

analysis of grassland types can be made between VGT-TEA

and the Map of Rangeland Resources in China (CAS/SPC,

1996). Compared to the Map of Rangeland Resources,

VGT-TEA (pure pixels) underestimates the total grassland

area, yet several of the major types (typical steppe, desert

steppe, desert) are similar in area. The main discrepancy

between the Map of Rangeland Resources and VGT-TEA

occurs in the meadow/meadow steppe category (Table 5),

which is greatly underestimated in the VGT-TEA product.

Some of this discrepancy can be accounted for by VGT-

TEA mixed classes (meadow steppe/typical steppe, shrub-



Fig. 3. VGT-TEA land cover classification derived from year 2000 VGT data; class codes are defined in Table 2.
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land/grassland, cropland/natural vegetation) that likely con-

tain a proportion of meadow/meadow steppe vegetation.

3.3. Accuracy assessment of VGT-TEA classification

3.3.1. China

The NLCD dataset contains percentage fractions of

individual land cover types within 1-km pixels as deter-

mined from fine-resolution Thematic Mapper data. Within

the Chinese portion of TEA, each aggregated land cover

class from VGT-TEA was overlaid with the NLCD product

in a geographical information system (ArcINFO version

8.0). This provides quantitative information (Table 6) on the
Table 3

Estimates of aggregated land cover area (1000 km2) for the China portion of

the TEA study area, as estimated from various remote sensing products

Land cover VGT-TEA NLCD IGBP

Woody vegetation 351a 437 957b

Grassland 698a 909 620c

Sparsely vegetated 1019a 1057 730

Cropland 464 421 451

Cropland/NVM 320 NA 276

Shrub/grassland 66 NA NA

VGT-TEA and IGBP products are per-pixel 1-km classifications, while

NLCD estimates were derived from 1999/2000 Thematic Mapper data.
a Components of this aggregated class can be found in Table 1.
b Includes all IGBP forest, shrub, and woody savanna classes.
c Includes IGBP grassland and savanna classes.
contribution of individual NLCD land cover components

for: (a) each of the aggregated land cover classes in VGT-

TEA (cropland, woody vegetation, grassland, sparsely veg-

etated) and (b) two mixed classes in VGT-TEA (cropland/

natural vegetation mosaic, shrubland/grassland). Results of

the land cover decomposition of the two VGT-TEA mixed

classes are presented in Section 3.2 and Table 6.

The accuracy of the aggregated VGT-TEA classes can be

defined as the percentage of each class that corresponds to

the same aggregated land cover in the NLCD product. Of

the four major aggregated land cover classes (cropland,

woody vegetation, grassland, sparsely vegetated), the

sparsely vegetated category had the highest accuracy at

80.5%. This category was most often misclassified as

grassland, likely due to the expansive transition zones that
Table 4

Estimates of aggregated land cover area (1000 km2) for the China portion of

the TEA study area

Land cover VGT-TEA NLCD

Woody vegetation 429a 437

Grassland 880a 909

Sparsely vegetated 1048a 1063

Cropland 548 421

VGT estimates include proportions of the two mixed classes (cropland/

NVM, shrubland/grassland) that were decomposed by comparing to the

NLCD fractional composition of that area (Table 6).
a Components of this aggregated class can be found in Table 2.



Table 5

Estimates of grassland types (1000 km2) for the China portion of the TEA

study area, as estimated from the VGT-TEA classification and the Map of

Rangeland Resources of China (CAS/SPC, 1996)

Grassland type VGT-TEA Rangeland map

of China

Desert 333a 373a

Desert steppe 184 187a

Typical steppe/desert steppe 32 78

Typical steppe 294 312

Meadow/meadow steppe 74 419a

Meadow steppe/typical steppe 131 NA

Shrubland/grassland 69 NA

Cropland/NVM 343 NA

a Indicates that this grassland type was generated from the aggregation

of more detailed types.

Table 7

Total estimates of aggregated land cover area (km2) from the five

Mongolian validation areas

Land cover VGT-TEA TM IGBP

Woody vegetation 30,454a 30,368 60,092b

Grassland 97,298a 49,983 74,988c

Sparsely vegetated 26,318a 75,737 17,595

Cropland 218 1697 2661

Water 5847 6082 6065

Crop/NVM 191 NA 2384

Shrubland/grassland 3564 NA NA

a Components of this aggregated class can be found in Table 2.
b Includes all IGBP forest, shrub, and woody savanna classes.
c Includes IGBP grassland and savanna classes.
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contain noticeable components of both sparsely vegetated

land and grassland. Less than 1% of the VGT-TEA sparsely

vegetated category corresponded to NLCD cropland or

woody vegetation land cover, likely due to: (a) contrasting

spectral signatures between the land cover classes and (b)

geographically distinct areas of these land cover types that

aid in their discrimination. The VGT-TEA grassland cate-

gory had a detection accuracy of 60.2% and was most often

misclassified as sparsely vegetated land, likely due to the

expansive transition zones that occur between these two

land cover types. The VGT-TEAwoody vegetation category

had the second highest detection accuracy (72.4%) and was

largely misclassified as either grassland or cropland. The

VGT-TEA cropland category had the lowest detection

accuracy (54.5%) compared to the NLCD product. A

contributing factor to this lower accuracy may be a more

heterogenous nature of the cropland category due to small

field sizes and the presence of agriculture-related infrastruc-

ture (buildings, roads, ponds, etc.) in close proximity to the

fields. Because the NLCD product was derived from The-

matic Mapper imagery, a greater proportion of the smaller

cropland areas could be identified than with the 1-km spatial

resolution VGT imagery.
Table 6

Results of the validation of the China portion of the study area

NLCD (Landsat) land cove

Cropland Woody

vegetation

VGT-TEA land Cropland 253 67

cover (1000 km2) Woody Vegetation 30 254

Grassland 49 31

Sparsely Vegetated 4 6

Cropland/NVM 79 56

Shrubland/Grassland 5 22

Total area (NLCD) 420 436

Each aggregated land cover class from VGT-TEAwas overlaid with the NLCD (La

of actual land cover components for each aggregated land cover class in VGT-T

columns represent the aggregated NLCD (Landsat) land cover classes. Note tha

grassland) do not have identical NLCD classes; however, they are included so

Components of the aggregated VGT-TEA land cover classes are shown in Table
3.3.2. Mongolia

To validate the Mongolian portion of VGT-TEA, five

TM scenes from the early 1990s were used with classes

aggregated to match the VGT-TEA product. Table 7 is a

summary of the areas of each of the aggregated classes for

all of the TM scenes. The area estimates of both water and

woody vegetation from the two products were very close.

Cropland was underestimated by VGT-TEA, yet this cover

type represented a very small proportion of the five areas

used for validation. The grassland and sparsely vegetated

land cover types are characterized by large discrepancies in

area as estimated by VGT-TEA and the TM classifications

(Table 7). However, it is interesting to note that the sum of

both grassland and sparsely vegetated land are very close.

One possibility is that this discrepancy between grassland

and sparsely vegetated land is due to interannual variations

of climate and land cover type as opposed to actual

permanent land cover change. Much of Mongolia’s popu-

lation still maintains the sustainable pastoral lifestyle, and

the landscape has not been subject to the same anthropo-

genic pressure as exists in Inner Mongolia of China.

Interannual variation in the climate of the steppe grasslands

of TEA is well documented (Fernandez-Gimenez & Allen-

Diaz, 1999; Lee et al., 2002; Xiao et al., 1995). Significant
r (1000 km2)

Grassland Sparsely

vegetated

Water Urban Total area

(VGT-TEA)

81 18 13 32 464

48 14 3 2 351

420 176 13 9 698

178 820 6 5 1019

147 25 6 7 320

35 4 0 0 66

909 1057 41 55

ndsat) product in a GIS (ArcInfo 8.0). This exercise revealed the distribution

EA. Rows represent the aggregated VGT-TEA land cover classes, while

t the mixed land cover classes in VGT-TEA (cropland/NVM, shrubland/

that the distribution of actual land cover in these classes can be shown.

2.
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variations in steppe vegetation in the amount of biomass

(Fernandez-Gimenez & Allen-Diaz, 1999; Xiao et al., 1995)

and vegetative cover (Fernandez-Gimenez & Allen-Diaz,

1999) have been documented between years due to differing

levels of precipitation. However, analysis of long-term

climate records did not reveal significant differences in

temperature or precipitation between the times of imaging

for the Landsat in early 1990s and VGT-TEA products in

2000. Another potential reason for the discrepancy between

grassland and sparsely vegetated area estimates is different

land cover class definitions and aggregations employed in

the Landsat image classifications. For example, the Mon-

golian TM products contained only two grassland classes

(meadow and steppe) that were aggregated for validation

purposes. VGT-TEA contains five categories of grassland

that were aggregated (Table 2) for comparison to the

Mongolian TM products. If all VGT-TEA land cover classes

that contain desert steppe (typical steppe/desert steppe,

desert steppe) were included in the ‘sparsely vegetated’

aggregated category, VGT-TEA area estimates of grassland

and sparsely vegetated land cover (approx. 76,000 and
Fig. 4. Seasonal dynamics of LSWI values from March 1 to November 30, 2000 fo

TEA; class codes are defined in Table 2.
54,000 km2, respectively) would be much closer to the

Landsat estimates.

3.4. Seasonal dynamics of vegetation indices

Summary statistics of the LSWI and EVI (Figs. 4 and 5,

respectively) time series for all of the woody vegetation and

grassland cover types were calculated in order to character-

ize seasonal dynamics of vegetation indices. It is likely that

the sharp decrease of LSWI in the spring and sharp increase

of LSWI in the fall can be attributed to snowmelt and snow

accumulation, respectively. There is much greater variation

in the timing of snowmelt and snow accumulation for the

woody vegetation cover types (Fig. 4a) than the grassland

(Fig. 4b). The LSWI time series is characterized by distinct

‘troughs’ in the spring and fall seasons that indicate the

transitional periods between a snow-dominated landscape

and a foliage-dominated landscape. During these trough

periods, the spectral signal is dominated by non-photosyn-

thetic vegetation and the soil background, resulting in the

lowest LSWI values of the year. By defining the timing and
r (a) the woody vegetation cover types and (b) grassland cover types, within



Fig. 5. Seasonal dynamics of EVI values from March 1 to November 30, 2000 for (a) the woody vegetation cover types and (b) grassland cover types, within

TEA; class codes are defined in Table 2.
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length of the plant growing season with the LSWI ‘troughs’,

it is evident that there is a great degree of variation in

growing season length amongst woody vegetation cover

types (Fig. 4a), with the growing season for deciduous

broadleaf forest being several weeks longer than other kinds

of woody vegetation. The majority of the deciduous broad-

leaf forest in our study area was located in Northeastern

China. These forests are a mix of the southern reaches of the

boreal forest and the northern extent of the temperate mixed

hardwood forest. All of the other forest/woody categories in

our study (evergreen needleleaf, deciduous needleleaf,

mixed) contained a considerable portion of coniferous

vegetation. These classes were located in the northern

portion of the study area (boreal ecosystem) or at the

grassland/boreal transition zone. The reason for the longer

growing season in the deciduous broadleaf category is likely

a function of both warmer temperature and increased

moisture availability in northeastern China. Woody vegeta-

tion in TEA is controlled by both temperature/elevation and

precipitation regimes, as opposed to the grassland areas that

are uniformly driven by the summer monsoon precipitation
only. The seasonal dynamics of the precipitation-driven

grassland cover types (Fig. 4b) exhibit a growing season

from late April–early May to late September. Grassland

cover types also exhibit very little variation in foliar

moisture content during the peak growing season. While it

is possible to spectrally distinguish the areas that contain

meadow/meadow steppe vegetation from other grassland

types, all of the classes that contain only typical/desert

steppe are indistinguishable in terms of foliar moisture. This

is likely a result of the strong soil background signal that is

present in these grassland types.

The EVI time series for woody vegetation (Fig. 5a)

reveals considerable differences in EVI values during the

peak growing season (July and August), ranging from

approximately 0.35 (evergreen needleleaf forest) to 0.5

(deciduous broadleaf forest). This is indicative of the

greater chlorophyll content of the broadleaf canopy. This

strong contrast in EVI values between broadleaf and

needleleaf forests, which has also been observed using

MODIS data (Huete et al., 2002), could be useful in the

discrimination and mapping of forest types. For woody
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land cover types containing deciduous or mixed vegeta-

tion, the EVI values at the beginning and end of the

growing season (as determined from the LSWI time series)

are approximately 0.15. This threshold value could poten-

tially be used as an indicator of deciduous growing season

length from EVI data, although this will need further

testing in other areas of woody vegetation. The EVI time

series for grassland (Fig. 5b) was slightly more effective at

discriminating between grassland types and featured a

greater dynamic range of values during the peak growing

season than the LSWI time series (Fig. 5b). There was an

expected decrease of EVI values from meadow vegetation

to typical steppe to desert steppe, based on the structure of

the grasses and the canopy cover. Interestingly, the peak

values of both EVI and LSWI differ among the grassland

types, with the meadow/meadow steppe categories achiev-

ing their maximum index values in mid-July, and all other

categories (typical and desert steppes) achieving their

maximum index values in mid-August.
4. Discussion and conclusions

The results of this study have demonstrated the potential

of improved vegetation indices (EVI and LSWI) for land

cover classification in Temperate East Asia. Seasonal dy-

namics of vegetation indices is correlated to vegetation

phenology and widely used in land cover classification at

large spatial scales. Accurate measurements of vegetation

phenology for various vegetation types are required to

improve our understanding of the interannual variability of

carbon exchange in terrestrial ecosystems for use in pro-

duction efficiency models (Zhang et al., 2003). Information

on the timing and length of the plant growing season is

needed in the estimation of gross primary production

(photosynthesis) and can be inferred from the seasonal

dynamics of vegetation indices. While satellite sensors

may be limited in their ability to detect some traditional

phenological events (e.g., budding, flowering), they are

capable of detecting broad landscape-level changes that

are descriptive of the ecosystem as a whole (Tieszen et

al., 1997). With the introduction of a new generation of

moderate resolution optical sensors (VGT, MODIS) in

recent years, there is the opportunity to utilize a greater

number of spectral bands in analyses of vegetation. This

study highlights the utility of using both EVI and LSWI

seasonal time series in analyses of land cover phenology.

Previously, AVHRR-derived NDVI data have been used to

define the length of temperate forest growing seasons, using

NDVI threshold values ranging from 0.25 (Myneni et al.,

1998) to 0.45 (Jenkins et al., 2002). However, for deciduous

broadleaf forests, seasonal EVI curves are more symmetrical

about the peak of the growing season (Huete et al., 2002)

when compared to NDVI. In addition, the sensitivity to

canopy leaf structure results in strong contrasts of EVI

values between needleleaf and broadleaf forests (Huete et
al., 2002) that may aid in the mapping and discrimination of

forest types. In a previous analysis of Northeast China

forests (Xiao et al., 2002b), we suggested that additional

information regarding vegetation phenology can be

extracted from the seasonal dynamics of LSWI. In this

analysis, we suggest that the LSWI time series can be used

to define the growing season of different vegetation types as

the period between the spring and fall troughs (Fig. 4a). This

between-trough period indicates the existence of canopy

moisture. The use of the LSWI time series to define the

vegetation growing seasons resulted in phenological pat-

terns that would be expected, such as a much longer

growing season for deciduous broadleaf forest than tundra.

Because grasslands cover a significant proportion of the

Earth’s surface and play a pivotal role in the global carbon

cycle, there have been several previous remote sensing

analyses of grassland phenology (Davidson & Csillag,

2003; Reed et al., 1994; Ricotta et al., 2003; Tieszen et

al., 1997). These studies utilized time series of NDVI

composites (10-day or bi-monthly temporal resolution) from

the AVHRR sensor, for the purpose of analyzing differences

in net primary productivity between C3 and C4 grasslands in

North America. The distribution of C3 and C4 grasses could

be determined by differences in satellite-derived phenolog-

ical indicators, including growing season onset and cessa-

tion. Our analysis highlights the potential utility of both

LSWI and EVI seasonal time series for the delineation of

grassland growing season, and to a lesser extent grassland

type mapping. As with forest, the LSWI time series can be

used to define the growing season of grassland types as the

period between the spring and fall troughs (Fig. 4b). Due to

the limited dynamic range of values for the grassland types,

LSWI could only be used to discriminate between the

grasslands that contained meadow/meadow steppe and those

that did not. However, the slightly larger dynamic range of

EVI values during the peak growing season (Fig. 5b) may

allow for more detailed discrimination of grassland types

(meadow steppe, typical steppe, desert steppe). The dis-

crimination of grassland types from the seasonal dynamics

of spectral indices is of critical importance due to the high

interannual variability in land cover and biomass that exists

within the temperate grasslands of TEA. The interannual

variability is due to both biotic (e.g., grazing, disease,

insects) and abiotic factors (drought, extreme temperatures)

and can have a significant impact on the area occupied by

each grassland type each year.

It is evident that TEA is an area of significance in regards

to the global carbon cycle due to the expanses of forests,

woodlands, and grasslands. Because of the variability in

land cover (especially grassland) that occurs in TEA on an

annual basis, frequent monitoring is necessary to provide

timely and accurate input to production efficiency models.

Our results show that the seasonal dynamics of multi-

temporal VGT spectral indices can be used to discriminate

vegetation type and the duration of the growing season for

various types of vegetation. This analysis would benefit
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from validation efforts of the vegetation phenology patterns

(field observations of spring green-up and fall senescence)

determined from the spectral indices and further large-scale

validation of the land cover map in Mongolia and Siberia.

The development of VGT-TEA has shown that moderate

resolution satellite data can be used to: (a) develop reason-

ably accurate land cover maps in a region of high land cover

diversity and (b) monitor the seasonal dynamics of vegeta-

tion and use these patterns to discriminate vegetation types.
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